Sunday, December 7, 2025

3D Quantum Black Hole in Spherical Box

3D Quantum Black Hole in Spherical Box

Modeling a microscopic black hole as a quantum particle in a 3D spherical infinite well with proper angular momentum quantization

Key Advancement: Realistic 3D Geometry

Moving from 1D to 3D spherical geometry properly accounts for:

1. Spherical symmetry of actual black holes

2. Angular momentum quantization (quantum numbers ℓ and m)

3. Radial probability distributions that match Schwarzschild geometry

4. Realistic tunneling probabilities through spherical barriers

1D vs 3D Model Comparison

1D Particle in a Box

Simplified Model: Particle confined to line segment 0 < x < L

Wavefunction: ψₙ(x) = √(2/L) sin(nπx/L)

Energy: Eₙ = n²π²ħ²/(2mL²)

Single quantum number: n = 1, 2, 3, ...

Limitations: No angular dependence, unrealistic for spherical black holes

3D Spherical Infinite Well

Realistic Geometry: Particle confined to sphere of radius R

Wavefunction: ψₙℓₘ(r,θ,φ) = Rₙℓ(r)Yℓₘ(θ,φ)

Energy: Eₙℓ = (ħ²/2mR²)αₙℓ² where αₙℓ are zeros of Bessel functions

Three quantum numbers: n (radial), ℓ (angular), m (magnetic)

Advantages: Proper spherical symmetry, angular momentum quantization

Mathematical Formulation: 3D Schrödinger Equation

-ħ²/2m ∇²ψ(r,θ,φ) + V(r)ψ(r,θ,φ) = Eψ(r,θ,φ)

In spherical coordinates, the Laplacian operator is:

∇² = 1/r² ∂/∂r(r² ∂/∂r) + 1/(r² sinθ) ∂/∂θ(sinθ ∂/∂θ) + 1/(r² sin²θ) ∂²/∂φ²

For a spherical infinite well of radius R (black hole radius):

V(r) = 0 for r < R, V(r) = ∞ for r ≥ R
1
Separation of Variables

Assume solution factorizes: ψ(r,θ,φ) = R(r)Y(θ,φ)

Radial and angular parts separate with separation constant ℓ(ℓ+1):

1/R d/dr(r² dR/dr) - (2mr²/ħ²)[V(r)-E] = ℓ(ℓ+1) = -1/Y Λ Y

where Λ is the angular part of Laplacian.

2
Angular Solution: Spherical Harmonics

The angular equation gives spherical harmonics Yℓₘ(θ,φ):

Yℓₘ(θ,φ) = (-1)ᵐ √[(2ℓ+1)(ℓ-|m|)!/(4π(ℓ+|m|)!)] Pℓ^{|m|}(cosθ) e^{imφ}

where ℓ = 0, 1, 2, ... and m = -ℓ, -ℓ+1, ..., ℓ-1, ℓ

3
Radial Solution: Spherical Bessel Functions

For V(r) = 0 inside well, radial equation becomes:

d²u/dr² + [k² - ℓ(ℓ+1)/r²]u = 0 where u(r) = rR(r), k² = 2mE/ħ²

Solution: Rₙℓ(r) = A jℓ(kr) where jℓ(x) are spherical Bessel functions.

4
Boundary Condition at r = R

Wavefunction must vanish at boundary: ψ(R,θ,φ) = 0 ⇒ jℓ(kR) = 0

Define αₙℓ as the n-th zero of jℓ(x): jℓ(αₙℓ) = 0

Then: kₙℓ = αₙℓ/R and Eₙℓ = (ħ²αₙℓ²)/(2mR²)

Spherical Infinite Well
Radius R = Schwarzschild Radius
Quantum Black Hole State
Probability Density
Angular Quantization
Spherical Harmonics Yℓₘ(θ,φ)

Quantum Numbers and Energy Levels

Radial Quantum Number
n

n = 1, 2, 3, ...

Number of radial nodes

Angular Quantum Number

ℓ = 0, 1, 2, ..., n-1

Orbital angular momentum

Magnetic Quantum Number
m

m = -ℓ, ..., ℓ

z-component of angular momentum

State (n,ℓ) αₙℓ (Bessel zero) Energy Eₙℓ/E₁₀ Angular Momentum Degeneracy (2ℓ+1)
Ground state (1,0) π ≈ 3.1416 1.000 0 (s-orbital) 1
First excited (1,1) 4.4934 2.046 √2ħ (p-orbital) 3
(1,2) 5.7635 3.363 √6ħ (d-orbital) 5
(2,0) 6.2832 (2π) 4.000 0 1
(1,3) 6.9879 4.946 √12ħ (f-orbital) 7

Note: For our black hole model, the ground state (1,0) corresponds to the minimum black hole with zero angular momentum (Schwarzschild black hole). Higher ℓ states correspond to rotating black holes (Kerr black holes).

Spherical Solutions for Different States

Ground State (n=1, ℓ=0)
ψ₁₀₀(r,θ,φ) = (1/√(2πR)) × sin(πr/R)/r

Spherically symmetric (s-orbital)

Maximum probability at r=0 (center)

Zero angular momentum

p-orbital (n=1, ℓ=1)
ψ₁₁ₘ ∝ j₁(4.493r/R)Y₁ₘ(θ,φ)

Angular dependence: Y₁₀ ∝ cosθ

Probability maximum off-center

Angular momentum ħ

d-orbital (n=1, ℓ=2)
ψ₁₂ₘ ∝ j₂(5.764r/R)Y₂ₘ(θ,φ)

More complex angular pattern

Angular momentum √6ħ

Higher energy state

Radially excited (n=2, ℓ=0)
ψ₂₀₀ ∝ sin(2πr/R)/r

One radial node at r=R/2

Lower probability at center

Higher energy (4× ground state)

3D Tunneling Through Spherical Barrier

1
Finite Spherical Barrier Model

Replace infinite wall with finite potential barrier:

V(r) = 0 for r < R (inside black hole)
V(r) = V₀ for R ≤ r ≤ R + a (barrier region)
V(r) = 0 for r > R + a (outside)

where V₀ is gravitational potential barrier height, a is barrier width.

2
Radial Solutions in Each Region

Inside (r < R): ψ₁(r) = A jℓ(k₁r) where k₁ = √(2mE)/ħ

Barrier (R ≤ r ≤ R+a): ψ₂(r) = B hℓ⁽¹⁾(iκr) + C hℓ⁽²⁾(iκr)

where κ = √[2m(V₀-E)]/ħ and hℓ are spherical Hankel functions

Outside (r > R+a): ψ₃(r) = D hℓ⁽¹⁾(k₁r) (outgoing wave only)

3
Tunneling Probability (WKB Approximation)

For ℓ=0 (s-wave tunneling, most probable):

T ≈ exp[-2 ∫RR+a √(2m[V(r)-E])/ħ dr]

For constant V₀ and ℓ=0: T ≈ exp(-2κa)

For ℓ>0: Additional centrifugal barrier reduces tunneling probability.

4
Gravitational Potential Barrier

For black hole, V₀ ≈ mc² at horizon (rest mass energy)

Barrier width a ≈ few × Planck length for minimum black hole

Tunneling probability becomes extremely small but non-zero.

Python Implementation: 3D Quantum Black Hole

import numpy as np
from scipy.special import spherical_jn, spherical_yn, sph_harm
from scipy.optimize import root

class QuantumBlackHole3D:
    """3D quantum black hole in spherical box model"""
    
    def __init__(self, M, G=6.67430e-11, c=2.99792458e8, hbar=1.054571817e-34):
        self.M = M  # Black hole mass (kg)
        self.G = G
        self.c = c
        self.hbar = hbar
        
        # Schwarzschild radius
        self.R = 2 * G * M / c**2
        
        # For particle in box, we use effective mass (could be M or reduced mass)
        self.m = M  # Simplified: black hole as single quantum entity
        
        # Bessel function zeros (αₙℓ) for n=1
        self.alpha_zeros = {
            (1,0): np.pi,           # j₀(π)=0
            (1,1): 4.4934094579,    # j₁(x)=0 first zero
            (1,2): 5.7634591969,    # j₂(x)=0 first zero
            (1,3): 6.9879320005,    # j₃(x)=0 first zero
            (2,0): 2*np.pi,         # j₀(2π)=0
            (2,1): 7.7252518369,    # j₁(x)=0 second zero
        }
    
    def energy_level(self, n, l):
        """Energy of state (n,l) in spherical infinite well"""
        if (n,l) in self.alpha_zeros:
            alpha = self.alpha_zeros[(n,l)]
        else:
            # Find zero of spherical Bessel function j_l(x)
            alpha = self.find_bessel_zero(n, l)
        
        return (self.hbar**2 * alpha**2) / (2 * self.m * self.R**2)
    
    def find_bessel_zero(self, n, l):
        """Find n-th zero of spherical Bessel function j_l(x)"""
        # Define function whose root we want: j_l(x) = 0
        def func(x):
            return spherical_jn(l, x)
        
        # Initial guess based on asymptotic formula
        # Zeros of j_l(x) ~ π(n + l/2) for large n
        guess = np.pi * (n + l/2)
        
        # Use root finding (simplified - in practice need careful handling)
        # This is a simplified version
        result = root(func, guess)
        return result.x[0]
    
    def radial_wavefunction(self, n, l, r_points=1000):
        """Calculate radial wavefunction R_nl(r)"""
        alpha = self.alpha_zeros.get((n,l), self.find_bessel_zero(n, l))
        k = alpha / self.R
        
        r = np.linspace(0, self.R, r_points)
        R = spherical_jn(l, k * r)
        
        # Normalize: ∫|R(r)|² r² dr = 1
        norm = np.trapz(R**2 * r**2, r)
        R_normalized = R / np.sqrt(norm)
        
        return r, R_normalized
    
    def probability_density(self, n, l, m, theta=0, phi=0, r_points=1000):
        """Calculate full probability density |ψ_nlm(r,θ,φ)|²"""
        r, R_nl = self.radial_wavefunction(n, l, r_points)
        
        # Spherical harmonic
        Y_lm = sph_harm(m, l, phi, theta)
        
        # Full wavefunction ψ_nlm(r,θ,φ) = R_nl(r) * Y_lm(θ,φ)
        # Probability density integrated over angles gives radial probability
        psi = R_nl * Y_lm
        
        return r, np.abs(psi)**2
    
    def tunneling_probability(self, n, l, V0, a):
        """
        Estimate tunneling probability through finite barrier
        V0: Barrier height (J)
        a: Barrier width (m)
        """
        E = self.energy_level(n, l)
        
        if E >= V0:
            return 1.0  # Above barrier, not tunneling
        
        # For ℓ=0, simple WKB approximation
        kappa = np.sqrt(2 * self.m * (V0 - E)) / self.hbar
        
        # For ℓ>0, additional centrifugal barrier
        centrifugal = self.hbar**2 * l*(l+1) / (2 * self.m * self.R**2)
        kappa_eff = np.sqrt(2 * self.m * (V0 + centrifugal - E)) / self.hbar
        
        # Transmission probability (simplified)
        T = np.exp(-2 * kappa_eff * a)
        
        return T
    
    def hawking_temperature(self):
        """Hawking temperature for this black hole"""
        return self.hbar * self.c**3 / (8 * np.pi * self.G * self.M * 1.380649e-23)
    
    def evaporation_time(self):
        """Time for complete evaporation via Hawking radiation"""
        return (5120 * np.pi * self.G**2 * self.M**3) / (self.hbar * self.c**4)

# Example calculation for minimum black hole
M_min = 6.5e-9  # kg (from previous calculation)
bh = QuantumBlackHole3D(M_min)

print("3D Quantum Black Hole Model")
print(f"Mass: {M_min:.2e} kg")
print(f"Schwarzschild radius: {bh.R:.2e} m")
print(f"\nEnergy levels (in Joules):")
for (n,l) in [(1,0), (1,1), (1,2), (2,0)]:
    E = bh.energy_level(n, l)
    print(f"  State (n={n}, l={l}): E = {E:.2e} J = {E/1.602e-19:.2e} eV")

print(f"\nGround state energy: {bh.energy_level(1,0):.2e} J")
print(f"Mass energy (Mc²): {M_min * (2.9979e8)**2:.2e} J")

# Calculate tunneling probability
V0 = M_min * bh.c**2  # Rest mass energy as barrier height
a = 1.616e-35  # Planck length as barrier width
T_tunnel = bh.tunneling_probability(1, 0, V0, a)
print(f"\nTunneling probability (ℓ=0, ground state): {T_tunnel:.2e}")

# Compare with Hawking radiation rate
T_H = bh.hawking_temperature()
print(f"Hawking temperature: {T_H:.2e} K")
print(f"Evaporation time: {bh.evaporation_time():.2e} s")

# Generate radial probability distribution
import matplotlib.pyplot as plt

r, prob = bh.probability_density(1, 0, 0, theta=0, phi=0)
plt.figure(figsize=(10, 6))
plt.plot(r/bh.R, prob**2 * r**2, 'b-', linewidth=2, label='Radial probability density')
plt.xlabel('r / R (normalized distance)')
plt.ylabel('Probability density × r²')
plt.title('3D Quantum Black Hole: Ground State (n=1, ℓ=0)')
plt.grid(True, alpha=0.3)
plt.legend()
plt.show()

Physical Interpretation & Implications

Aspect 1D Model 3D Spherical Model Physical Significance
Ground State n=1: ψ₁(x)=√(2/L)sin(πx/L) n=1, ℓ=0: ψ₁₀₀∝sin(πr/R)/r Spherically symmetric minimum black hole
Angular Momentum Not accounted for Quantized: L²=ℓ(ℓ+1)ħ² ℓ>0 states = rotating (Kerr) black holes
Degeneracy 1 (non-degenerate) 2ℓ+1 (m=-ℓ,...,ℓ) Multiple states with same energy but different orientation
Tunneling Simple exponential decay Angular momentum barrier reduces tunneling for ℓ>0 s-waves (ℓ=0) tunnel most easily
Black Hole Type Schwarzschild only ℓ=0: Schwarzschild, ℓ>0: Kerr-like More realistic classification of quantum black holes
Key Physical Insights from 3D Model:

1. Minimum Black Hole is Spherically Symmetric: The ground state (n=1, ℓ=0) has no angular momentum, corresponding to a non-rotating Schwarzschild black hole.

2. Rotating Quantum Black Holes: States with ℓ>0 represent microscopic rotating black holes with quantized angular momentum.

3. Higher ℓ States Tunnel Less: The centrifugal barrier ℓ(ℓ+1)ħ²/(2mr²) makes tunneling less probable for states with angular momentum.

4. Realistic Probability Distribution: The 3D radial probability |R(r)|²r² peaks at specific radii, unlike 1D model's simple sine squared.

Conclusion: Advantages of 3D Model

1. Realistic Geometry

The 3D spherical model properly captures the spherical symmetry of actual black holes, unlike the 1D simplification. Black holes are fundamentally 3D objects, and the spherical well is the natural quantum analog.

2. Angular Momentum Quantization

The 3D model naturally incorporates quantized angular momentum through quantum numbers ℓ and m. This allows us to distinguish between non-rotating (ℓ=0) and rotating (ℓ>0) quantum black holes, corresponding to Schwarzschild vs. Kerr black holes in classical GR.

3. More Accurate Tunneling

Tunneling probabilities in 3D account for centrifugal barriers that reduce tunneling for states with angular momentum. The s-wave (ℓ=0) tunneling is most probable, which aligns with expectations from quantum field theory in curved spacetime.

4. Foundation for Advanced Models

This 3D model can be extended to include:

- Relativistic corrections (Klein-Gordon or Dirac equation instead of Schrödinger)

- Finite temperature effects (black hole thermodynamics)

- Quantum field theory in the curved background

- Backreaction of emitted particles on spacetime

Final Insight: While the 1D particle-in-a-box model provides valuable conceptual insights, the 3D spherical model is essential for realistic quantum descriptions of black holes. It reveals that the minimum quantum black hole is a spherically symmetric, zero-angular-momentum object (ℓ=0 ground state), and that rotating quantum black holes correspond to excited states with ℓ>0. The tunneling dynamics are more complex but more physically accurate in 3D, with s-wave tunneling dominating the evaporation process.

3D Quantum Black Hole Model | Spherical infinite well with angular momentum quantization

This model bridges quantum mechanics with black hole physics but remains non-relativistic. Full quantum gravity would require relativistic quantum field theory in curved spacetime.

No comments:

Post a Comment

The Africa Corps in the Sahel: A Consolidated Overview The Africa Corps in the Sahel: A Consolidated O...