Turing Machine Encoding of 3^{3^{2^0}}
This page outlines how to encode the nested exponentiation expression 3320 into a Turing Machine using unary representation and symbol rewriting.
🧮 Step 1: Understand the Expression
2^0 = 1
3^1 = 3
3^3 = 27
Final result: 27
🧵 Step 2: Tape Encoding in Unary
We represent numbers in unary using |
strokes:
- 1 →
|
- 3 →
|||
- 27 →
|||||||||||||||||||||||||||
Structured input tape:
^ (||| , ^ (||| , ^ (|| , 0)))
⚙️ Step 3: Turing Machine Components
Alphabet:
{ |, 0, ^, (, ), ,, _, # }
States:
{
q_start, q_scan, q_mark_base, q_mark_exp,
q_exp_loop, q_mult_loop, q_copy_base,
q_cleanup, q_accept
}
Transition Function Overview:
- Scan for innermost
^(a,b)
- Evaluate exponentiation via repeated multiplication
- Replace subexpression with result in unary
- Repeat until no
^
remains
🧪 Step 4: Subroutine Sketch
Exponentiation:
- If
b = 0
, result is|
- Otherwise, repeat multiplication
b
times
Multiplication:
- Copy
a
,b
times - Append each copy to result zone
🧾 Step 5: Sample Transitions
Exponentiation for a^0 → 1
:
State | Read | Write | Move | Next State |
---|---|---|---|---|
q_exp_loop | 0 | | | L | q_cleanup |
q_exp_loop | | | | | R | q_copy_base |
Multiplication Loop:
State | Read | Write | Move | Next State |
---|---|---|---|---|
q_mult_loop | | | # | R | q_copy_base |
q_copy_base | | | | | R | q_mult_loop |
🧠Final Output
After all rewrites, the tape contains:
|||||||||||||||||||||||||||
That’s 27 strokes—our final result.
✨ Want to Go Deeper?
I can walk you through building the full transition table for one of the subroutines, simulate the tape step-by-step, or even visualize the state transitions. Just say the word!
No comments:
Post a Comment